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For an axially symmetric group of n atoms in torsional oscillation about the symmetry axis and with no 
other modes of motion, the contribution to the structure factor assuming a Gaussian distribution for the 
angular displacement from the mean angular position is given by a Bessel-function series expression of 
the same form as the King & Lipscomb [Acta Cryst. (1950). 3, 155-158] expression for a hindered rotator 
except that their factors lm(b)/Io(b) are replaced by factors exp [ -  n2m2f12/2], where f12 is the mean-square 
angular displacement. Expressions for the real and imaginary parts of the structure-factor contribution 
and the derivatives required for least-squares refinement are given. With minor changes the formalism 
of these expressions applies to the King-Lipscomb hindered rotator. With the addition of factors for 
other modes of motion, the case with n = 1 has been programmed and successfully applied by Brown & 
Chidambaram in the paper following this one. 

Introduction 

A number  of  authors have discussed the problem of  
devising a proper structure-factor expression for an 
a tom in librational motion. For  such motion the usual 
six-parameter thermal factor is not appropriate,  since 
it is derived on the assumption of independent recti- 
l inear harmonic  motions in three degrees of freedom. 
For  general discussions and leading references see 
Cruickshank (1956), Johnson (1970a, b), Johnson & 
Levy (1972), and Maslen (1970). This paper describes 
a model for use in least-squares refinement for an 
a tom having as principal mode of mot ion a l ibration 
of large ampli tude about a single axis. The circum- 
stances leading to the development of the model and 
the details of  its application to the methyl hydrogen 
a tom in copper(II) acetate monohydra te  were de- 
scribed prel iminari ly by Brown & Ch idambaram (1967) 
and are detailed in the accompanying paper by Brown 
& C h i d a m b a r a m  (1973). 
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and in part by the U.S. Agency for International Development. 

"t" Permanent address: Nuclear Physics Division, Bhabha 
Atom Research Centre, Trombay, Bombay 85, India. 

Derivation 

Bloch (1932) showed that for the linear quantum- 
mechanical  harmonic  oscillator at a given temperature 
the probabil i ty distribution function for displacements 
x is Gaussian.  In analogy, we make the assumption 
that for an a tom in torsional oscillation about a single 
axis the probabil i ty distribution function of positions 
0 about the mean position 7 on a circular arc is the 
Gaussian function 

P(O)=(2zr62)-l/Z[exp - ( O -  y)z/262] , (1) 

where 62 is the mean value of (0-y)2.  Normal  proba- 
bility distributions have been used by Kay & Behrendt 
(1963) in developing a structure-factor expression for 
an a tom in two-dimensional l ibrational motion and 
also by Maslen (1968, 1970) for the one-dimensional  
case. Our treatment differs f rom that of Kay & Beh- 
rendt and that of  Maslen in that we do not make the 
approximat ion that sin 0 =  0 in order to obtain an ex- 
pression in closed form;  instead, we develop a series 
expression, following very closely the derivation of 
King & Lipscomb (1950) for a hindered rotator. The 
expression is also generalized for the case of a group of 
n equal atoms with an n-fold axis of  symmetry to corre- 
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spond to King & Lipscomb's general expression for a 
hindered rotator with a potential function of n-fold 
symmetry. 

Suppose an atom R rigidly bonded to atom Q is in 
librational motion about the center C on the axis 
through atoms P and Q (Fig. 1). Let the vector r be 
defined by the equation 

r = RX-- cX, (2) 

where aX and cX are vectors from the unit-cell origin 
to R and C, respectively. Let r, Rx, and cX be the col- 
umn matrices of components of these three vectors 
referred to the base vectors ai(i= 1, 2, 3) of the unit 
cell. The vector r can also be specified by the magnitude 
r and the angle 0 measured as shown in Fig. 1 from the 
line through C parallel to the projection on the r,O 
plane of the reciprocal vector h specified by the column 
matrix h of the indices. In Fig. 1, both the reciprocal 
vector and its projection are drawn through C for 
convenience. 

Let iu(i= l, 2, 3) be the unit base vectors of a right- 
handed Cartesian coordinate system such that lu has 
the direction P to Q, 2u has the direction of r for the 
mean position of atom R (that is, of r for 0=y),  and 
3u is along the tangent to the circle at the mean position 
of R. Let Zu be the column matrix of components ~uj 
of ~u referred to the reciprocal base vectors a i ( j=  1,2, 3) 
of the crystal. The position of C can be specified by the 
equation 

cX = ox + M ( o x -  ex) , (3) 
where 

M -  Lco/Loe , (4) 

and the distances Lco and Lop (see Fig. 1) are given by 
the equations 

Lco = ~ (RX i -  oxi)ai . iu 
i 

= ~ ~-,(Rx'- o x ' ) ,  
i 

Lo~ = [(o~-,,2)g(ox- r x ) ] ' <  

(5) 

(6) 

(7) 

211 

\ Q 

LQptU 
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Fig. 1. (See text.) 

In (7) g is the metric tensor for the crystal coordinate 
system; i.e. g u = a i ,  a i. The matrix o.~ is the transpose 
of ox, etc. 

The contribution of atom R to the structure factor 
F(h) is then written as 

FR(h) =fn(h) exp (27r~ cX) I (2n6z)-1/2 x 
0 

exp [-(0-7)2/262] exp (2~zihr)dO, (8) 

wherefR(h) is the scattering factor of R. Defining h as 
the magnitude of the reciprocal vector h and ~ as 
2nhr sin ~,(h), where ~(h) is the angle between lu and 
h, we can write 

2~z~r = & cos O. (9) 

The exponential exp (& cos 0) may be written as a 
uniformly convergent series (Watson, 1948, p. 22; 
McLachlan, 1955, p. 57)" 

exp (& cos 0)= ~. i"tmJm(o 0 cos (mO) , 
m = O  

(lo) 

where Jm(~) is the Bessel function of the first kind of 
order m and em is 1 for m = 0  and 2 otherwise. The 
integral in equation (8) may then be written 

I=(2~r62) -~/2 ~ i'emJ.,(~) exp [ - ( O -  y)z/262] x 
m = l  

o cos (mO)dO. (11) 

If 52 is not too large, the exponential term will decrease 
so rapidly with increasing value of 0 - y  that the inte- 
gral I can be evaluated with negligible error by using 
the limits - oo and + oo in equation (11). Using tabu- 
lated integrals, the expression for FR(h) becomes 

oo 

Fg(h)=f g(h) exp (2rcih cX) ~ imgmJm(oO × 

m = l  

cos (my) exp ( -  mZc~2/2) (12) 

= AR(h) + iBn(h). (13) 

To correspond with the general King & Lipscomb 
expression for the hindered rotator with potential 
function of n-fold symmetry, an expression can be 
derived by a generalization of our method for a group of 
equal atoms with n-fold axial symmetry. In equation 
(8) the factor exp (2nihv), equivalent to exp (ic~ cos 0), 

is replaced by ~ i~ cos (O+2nl/n); individual terms in 
/ = 1  

this sum are expanded as in equation (10); each result- 
ing function cos [m(0+ 2nl/n)] is expanded as the cosine 
of the sum of two angles; finally, after some simplifi- 
cation and an integration corresponding to that equa- 
tion (11), the resulting structure-factor contribution is 
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c~ 

F , R ( h ) = n f a ( h )  exp (2rcih cX) ~ i"memJ,,m(O0 × 

m = O  

cos (nmy)  exp (-nZmZdZ/2) (14) 

= A,,~(h) + iB,  a (h ) .  (15) 

The angle y in equation (14) defines the rest position 
on the circle of one reference atom of the n atoms of 
the group. The expression for F,,a(h) in equation (14) 
is of the same form as the King-Lipscomb general 
expression, except that the exponential exp ( - nZmZdZ/2) 
in (14) replaces the King-Lipscomb factor I , , (b) / Io(b) ,  
where I , , (b)  is the modified Bessel function and 
b = Vo/2k T. 

Johnson & Levy (1972) have pointed out that our 
procedure in deriving equation (14) is equivalent to 
using the generalization for n-fold axial symmetry of 
the probability distribution function for Brownian 
diffusion on a circle, which is also called the 'wrapped- 
up' normal distribution in the mathematical literature 
(Stephens, 1963; Gumbel, Greenwood & Durand, 1953 ; 
Wintner, 1933). They also point out that the King- 
Lipscomb derivation amounts to application of a gener- 
alization of the 'circular normal' distribution (von 
Mises, 1918; Breitenberger, 1963; Stephens, 1963; 
Gumbel, Greenwood & Durand, 1953). We prefer our 
own derivation and that of King & Lipscomb because 
they are more physical, but it is useful to know that 
there is a body of literature on these distributions. For 
example, it is known (Stephens, 1963) that for the 
unimodal case (n= 1 in our notation) for values of b 
up to 4.0 the circular normal distribution used by 
King & Lipscomb may be closely approximated by 
the wrapped-up normal distribution by appropriate 
choice of values of the parameter d'.  The close corre- 
spondence of the two distributions in this sense sug- 
gests that at least for the unimodal case, the only one 
we have applied, our method and the King-Lipscomb 
method should be nearly equivalent. Our preference 
for our own method is basically a preference for dealing 
in programming with exponential functions instead of 
modified Bessel functions. The King-Lipscomb as- 
sumption of a cosine potential function is no less arbi- 
trary than our assumption of a Gaussian distribution. 

Derivatives and programming 

For a structure-factor least-squares calculation using 
equation (14) the derivatives of A,R(h)  and B,,R(h) with 
respect to M, r, y, and dz are needed. For convenience 
in presenting expressions for these derivatives, we de- 
fine several sum functions. Let S~o,,p be defined by 

S~o.I , = ~ .  ( -  1)"'"lze.,nPmVJ.m(O 0 x 
n m  

even COS (nmy)  exp (--n'-mZd'/2) , (16) 

where m = l , 2 , . . . o o ;  let S~o. v be the corresponding 
sum with cos (nmy)  replaced by sin (nm),); let S~..p and 

S~,,,,p be corresponding sums but over odd values of 
mn and with the factors ( - 1 )  " ' /z  replaced by factors 
( -  1) ( . . , + ~ z ;  let S;0. p and so forth be the correspond- 
ing sums with J,,,,,(e) replaced by J,i,,,(a), the derivative 
of J.,,,(~) with respect to c~. One can then write for 
A,,~(h) and B.R(h) and their derivatives expressions of 
the general form 

= W ( T g S  o + T . S . )  (17) 

where S o is one of the even sums defined above (primed 
or unprimed) and S. is one of the odd sums. Each of 
the terms To and T,, is always + cos (Oc) or + sin (Oc), 

where O c - 2 r c h  cX. The complete expressions are speci- 
fied in Table 1. The sums involving the derivatives 
J,',.,(cO are evaluated using the recurrence relation 

J£(0{)  = _JR - 1 ( 0 0  - -  JR + 1(00 (18) 
2 

which reduces to Jo (a)= - J l ( a )  for k = 0 (McLachlan, 
1955, p. 34). 

Table 1. Speci f icat ion  o f  express ions  o f  the f o r m  

. ~ =  W ( T o S  o + T , S , )  f o r  A,,R(h) and  B,,R(h) 

and  their derivat ives  with respect  to M ,  r, 7, and  d 2 

In the table the simple symbols A, B, f. ~u, COS. and SIN 
replace A,~(h), B.R(h). f(h), qt(h), cos (~0c), and sin (q~c), respec- 
tively. 

w To So T, S. 
A n f  COS Sco,, o SIN Sou. o 
B n f  S IN So.q,, o - COS Sc~. o 
~A/FM 2~(ox - vx)nf  - S IN S¢9. o COS S ..... o 
~B/~M 2nh(ox- vx)nf  COS S~o, o SIN S .... o 
FA/Fr 2rehnf sin ~ COS S'~a. o SIN S~.. o 
~B/?r 2nhnf sin ~t SIN S'~o,, o - COS S&, o 
~A/?7 nf  - COS S~o,, 1 - S I N  S~,, 1 
~B/~7 n f  - S I N  S~o, i COS S .... 1 
FA/~d z nf/2 - COS Sco,, 2 - S IN S~.n 2 
?B/~62 nf/2 - S I N  S~o, 2 COS S~., 2 

From the derivatives of A,a(h) and B,,n(h) with res- 
pect to M, r, and ), in Table 1, the derivatives of 
A,,a(h) and B,,R(h) with respect to the coordinates x ~ 
( i = l ,  2, 3) of atoms P, Q, and R are obtained by 
equations of the form 

0A,,R(h) ~A,,R(h) aM 8A,,R(h) &" 
&'  = a f t -  >x' + - &  ax t 

8d,,R(h) ay 
+- -c3y  ? x ' "  (19) 

By inspection of Fig. 1 the partial derivatives O M / ~ x  ~, 
&'/Ox t, and Oy/c3x i are readily deduced. For example, 

c3M 
= a t .  Xu/LQp (20) 

c~ R x i 

= l u i / L o p .  (21) 
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Equation (21) also follows directly from equations (4) 
and (6). The other partial derivatives with respect to 
coordinates are as follows" 

cr 
~RXi : 21di (22) 

~)~ --3ui/r (23) 
~RX ~ 

~ M  
3ex~ - luiM/Lee (24) 

~r 
Oex ~ =2u~M (25) 

oexi = 3U i M / r  (26) 

3 M  
Oex~ - - ~u~(1 + M) /Lep  (27) 

6~r 
~ex t = -2u~(1 + M )  (28) 

c~y 
~oxi -- -- 3/At( I -Jr- M)/r  . (29) 

If the various sum functions used in Table 1 are re- 
defined by replacing factors exp (-nZm2y2/2) by fac- 
tors Im(b)/Io(b), the table then gives correctly A and B 
and their derivatives for the King-Lipscomb hindered 
rotator model, except that the last two lines no longer 
apply. The derivatives ~A/O6 z and ~B/~62 must be re- 
placed by c3A/Ob and OB/Ob, for which the series ex- 
pressions are easily written. The partial derivatives of 
equations (21)-(29) apply without change for the King- 
Lipscomb model. 

In general an atom in large-amplitude librational 
motion about a single axis will have other motions 
with smaller amplitudes which must be taken into con- 
sideration in structure-factor calculations. These mo- 
tions, which will include both intramolecular motions 
and rigid-body or segmented-body motions, will in 
general have different directions for their maximum 
amplitudes for the different atoms in the symmetrical 
torsional oscillator. For this reason we prefer to use 
equation (12) rather than (14) even when dealing with 
a symmetrical oscillator such as a methyl group. For 
each atom an appropriate factor can be multiplied 
into the right side of equation (12) to allow for the ad- 
ditional thermal motion. 

For additional intramolecular motion, we consider 
an appropriate factor to be 

T i = exp [ - 2n2~Us], (30) 

where s is the column matrix of components of the 
reflection vector referred to the Cartesian system with 
base vectors ~u defined above, and U is a 3 × 3 sym- 

metric matrix in which U33, U~3, and U23 are assigned 
fixed values of zero. The equation dZ=lUl  gives the 
mean-square displacement in the direction of a unit 
vector ! with components li parallel to the ~u. Let the 
matrix V be the matrix which transforms the crystal 
base vectors a~ to the lu; that is, let 

V =  (lU ZU 3u)g-l ,  (31) 

according to our previous definition of the column 
matrices ~u. Then 

Ti = exp [ -- 2nZh VUVh].  (32) 

In evaluating the three non-zero independent Uifs, 

one needs the derivative of h VUVh with respect to 
each of them. It is easily shown by the rules for differ- 
entiation of matrix products [see, for example, Inter- 
national Tables for  X-ray Crystallography (1959), p. 15, 
and references cited therein] that 

~(hVUVh) 
~Uij ='hDiJh ' (33) 

where the general element of the 3 × 3 matrix D t~ is 

D~flc = Vir Vjc + (1--6ij)VjrV~c, (34) 

where 6~j= 1 if i = j  and 6 i j=0 otherwise. 
To take into account rigid-body motion, we multi- 

ply into the expression for FR(h) an additional anise- 
tropic temperature factor of the usual form, 

TR=exp [--hflRh] , (35) 

for which the parameters fl~ are presumed to be avail- 
able from the results of a rigid-body analysis (Cruick- 
shank, 1956; Schomaker & Trueblood, 1968; Johnson, 
1970a) or segmented-body analysis (Johnson, 1970b) 
of the thermal parameters of the atoms not involved in 
torsional oscillation. The parameters fl~ are not ad- 
justed in the further crystallographic refinement. The 
basic assumption in the use of equation (35) is that the 
torsional motions already treated are independent of 
the rigid-body motion. There may be cases of interest 
in which it is a poor approximation. In other cases, it 
may be impossible or very difficult to do the prelimi- 
nary rigid-body or segmented-body analysis. 

We have modified a version of the least-squares pro- 
gram of Busing, Martin & Levy (1962) to include our 
torsional-oscillator model for the case n = 1 [see equa- 
tion (10) and read 1 for n Jn Table 1], including the 
additional temperature factors T~ and Tn explained 
above. For the purpose of simplifying the program- 
ming, the partial derivatives of equations (24)-(29) 
were not included; therefore, derivatives with respect 
to the coordinates x ~ of atoms P and Q do not include 
any terms ~AR(h)~x ~ or ~BR(h)/bx i. The omission of 
these terms is consistent with the omission from Table 
1 of partial derivatives with respect to the angle ~,. The 
components of the unit base vectors ~u are calculated 
anew at the beginning of each cycle. 
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The subroutine used to generate the Bessel functions 
was taken from the Control Data Corporation's li- 
brary of programs for the CDC 1604A computer. The 
procedure used in the subroutine has been described by 
Stegun & Abramowitz (1957) and by Goldstein & Cor- 
ley (1959). 

The rate of convergence in each of the series ex- 
pressions S o and Su represented in Table 1 is a function 
of the argument c~ of the functions J,,(~), of the mean- 
square amplitude 6 z, and of the symmetry number n. 
In our work on copper(II) acetate monohydrate 
(Brown & Chidambaram, 1973), in which n was taken 
to be 1, the maximum magnitude ofc~ was 10-24. Using 
estimates for the values of 62 for the methyl hydrogen 
atoms from the preliminary refinement and making 
reference to tables of Bessel functions, we concluded 
that including the terms through m = 14 for the S o sums 
and through m= 15 for the Su sums would provide 
satisfactory accuracy. Among all these sums for all the 
reflections the largest error is in fact about 1 × 10 -5, 
which is neglible in view of the small magnitudes (about 
10 or less) of the coefficients of the sums. The program 
might be improved by the incorporation of convergence 
tests. 

We thank Drs H. A. Levy and C. K. Johnson for 
helpful advice and discussion. 
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